Zagl Logo

LLM URL Shortening

AI systems සමඟ compatible predictable URL shortening සඳහා Base64 encoding

දළ විසදුම

ZAGL predictable, reproducible short URLs සඳහා Base64 encoding භාවිතා කරමින් LLM-friendly URL shortening සපයයි. API keys හෝ සංකීර්ණ authentication අවශ්‍ය නොමැතිව consistent URL generation අවශ්‍ය AI applications සඳහා මෙය ideal වේ.

LLM Compatible

AI systems සඳහා නිර්මාණය කර ඇත

Predictable

එකම URL සැමවිටම එකම short code ජනනය කරයි

API Keys නැත

සරල HTTP requests

API Reference

URL Encode

POST /api/llm/encode

Request Body

{ "url": "https://example.com/long/url/path" }

Response

{ "success": true, "data": { "shortUrl": "https://za.gl/e/aHR0cHM6Ly9...", "encoded": "aHR0cHM6Ly9leGFtcGxl...", "originalUrl": "https://example.com/...", "method": "base64", "expires": null, "createdAt": "2024-01-01T00:00:00Z" } }

Short URL Access

GET /e/{base64}

Short URL වෙත පිවිසීමෙන් ස්වයංක්‍රීයව මුල් URL එකට redirect වේ. Base64 encoded string එකේ මුල් URL අඩංගු වන අතර predictably decode කළ හැක.

Analytics

GET /api/llm/analytics?days=30&format=json

LLM-generated URLs සඳහා analytics data ලබා ගන්න. JSON සහ CSV formats support කරයි.

Query Parameters

  • days: දින ගණන (1-365, default: 30)
  • format: Response format (json or csv, default: json)

සීමාවන් සහ Specifications

Rate Limits

  • Encoding:: 60 requests/minute
  • Redirects:: 60 requests/minute
  • Analytics:: 120 requests/minute

Constraints

  • උපරිම URL දිග: 4KB
  • Protocols: HTTP, HTTPS පමණි
  • Private IPs: ආරක්ෂාව සඳහා අවහිරයි
  • කල් ඉකුත් වීම: කිසිදා නැත (permanent URLs)

Code උදාහරණ

Python

llm_shortener.py
import base64 import urllib.parse import requests def shorten_url_llm(url): """ Create a predictable shortened URL using Base64 encoding Compatible with ZAGL LLM functionality """ # Validate URL if len(url) > 4096: raise ValueError("URL exceeds 4KB limit") # Encode to Base64 encoded_bytes = base64.b64encode(url.encode('utf-8')) encoded_str = encoded_bytes.decode('utf-8') # Remove padding for cleaner URLs clean_encoded = encoded_str.rstrip('=') # Generate short URL short_url = f"https://yourdomain.com/e/{clean_encoded}" return { "short_url": short_url, "encoded": clean_encoded, "original_url": url } def decode_llm_url(encoded_url): """ Decode a Base64 encoded URL """ # Add padding back if needed padding_needed = 4 - (len(encoded_url) % 4) if padding_needed != 4: encoded_url += '=' * padding_needed # Decode decoded_bytes = base64.b64decode(encoded_url) return decoded_bytes.decode('utf-8') # Example usage original_url = "https://example.com/very/long/url/path" result = shorten_url_llm(original_url) print(f"Short URL: {result['short_url']}") print(f"Encoded: {result['encoded']}")

JavaScript/Node.js

llm_shortener.js
// JavaScript/Node.js implementation function shortenUrlLLM(url) { // Validate URL if (url.length > 4096) { throw new Error("URL exceeds 4KB limit"); } // Validate URL format try { new URL(url); } catch { throw new Error("Invalid URL format"); } // Encode to Base64 const base64 = Buffer.from(url, 'utf-8').toString('base64'); // Remove padding for cleaner URLs const cleanBase64 = base64.replace(/=/g, ''); // Generate short URL const shortUrl = `https://yourdomain.com/e/${cleanBase64}`; return { shortUrl, encoded: cleanBase64, originalUrl: url }; } function decodeLLMUrl(encodedUrl) { // Add padding back if needed let paddedBase64 = encodedUrl; while (paddedBase64.length % 4) { paddedBase64 += '='; } // Decode from Base64 return Buffer.from(paddedBase64, 'base64').toString('utf-8'); } // Example usage const originalUrl = "https://example.com/very/long/url/path"; const result = shortenUrlLLM(originalUrl); console.log(`Short URL: ${result.shortUrl}`); console.log(`Encoded: ${result.encoded}`);

Terminal / cURL

terminal
# Encode a URL curl -X POST https://za.gl/api/llm/encode \ -H "Content-Type: application/json" \ -d '{"url": "https://example.com/very/long/url/path"}' # Get analytics curl "https://za.gl/api/llm/analytics?days=7&format=json" # Get analytics as CSV curl "https://za.gl/api/llm/analytics?days=30&format=csv" \ -o analytics.csv

Use Cases

LLM Applications

  • ChatGPT plugins සහ integrations
  • Claude Code සහ AI development tools
  • Automated content generation
  • AI-powered link sharing

Automation සහ Scripting

  • CI/CD pipelines
  • Webhook integrations
  • Batch URL processing
  • Documentation generators

Compatible - za.gl/llm-docs specification

අවසන් යාවත්කාලීනය: 1/13/2026